📔
EE5127
  • Home
  • Lab
    • IoT Device Programming
      • Adafruit Feather nRF52840 Sense
      • Install CircuitPython!
      • CircuitPython Blink Program
      • CircuitPython Basics
        • Serial Console
        • Board Pins
        • Built-In Modules
      • Feather Onboard Sensors
      • Sensor Data Acquisition
        • Install Libraries
        • Sensor Demo
        • Sensor Applications
      • BLE Connectivity
      • File I/O
    • IoT Gateway
      • Setting up Raspberry Pi
      • BLE Communication
    • Azure IoT Hub
      • Setup Azure IoT Hub
      • Transmit Sensor Data using a Simulated Device
      • Monitor D2C messages in VS Code
      • Transmit Sensor Data using Gateway Device
      • Save telemetry data to Azure Blob storage
      • Visualise data in Power BI
    • Azure ML Studio
      • Create Resource Group
      • Create ML Workspace
      • Create Storage Account
      • Create Datastore
      • Create Dataset
      • Create an ML Pipeline
        • Create Compute Instance
      • Deploy an ML Model
      • Integrate ML Model with IoT Hub
  • Useful Links
  • Python
    • Python Reference
    • Upgrading pip
    • Python Installation
    • CircuitPython Help
  • Misc
    • Raspberry Pi
Powered by GitBook
On this page
  1. Lab
  2. Azure ML Studio

Create ML Workspace

This page provides steps to create a workspace in Azure Machine Learning.

  1. Click "Azure Machine Learning"

  1. Click on "+Create" button and select "New workspace".

  1. Click "Create new or select existing Resource group". Select the existing resource group created in the previous step.

  1. Type "AML-WS-EE5127-001" in Workspace name. Any name could be used. Then click "Review + create"

  1. Finally, click create to have Workspace created for you.

  1. Next, create a storage account.

Last updated 2 years ago